Exercise 10 (Solutions)
5.12.2006

(1) (a) True.
(b) True.
(c) False. For example the cyclic group \(\mathbb{Z}_4 \) and the Klein 4-Group \(V \) are not isomorphic, but both have 4 elements.
(d) True.
(e) False.
(f) True.
(g) True.
(h) False.
(i) True. (Content of Cayley’s Theorem.)

(2) (a) Since \(G \) is cyclic and \(a \in G \) is a generator there exists a \(n \in \mathbb{Z} \) such that \(x = a^n \). Then
\[
f(x) = f(a^n) = f(a^{n-1})f(a) = \ldots = f(a)f(a)^{n-1} = f(a)^n.
\]
Thus the value of \(x \) is determined by the value of \(f(a) \).
(b) Let \(y \in G \) and set \(x := f^{-1}(y) \). Since \(a \in G \) is a generator of \(G \) there exists a \(n \in \mathbb{Z} \) such that \(x = a^n \). Then
\[
y = f(x) = f(a^n) = f(a)^n \in (f(a)).
\]
Therefore \(f(a) \) is a generator of \(G' \). Note that in particular \(G' \) is cyclic.

(3) We know that \(\text{im}(f) \) is a subgroup of \(\mathbb{Z} \). Since \(\mathbb{Z}_n \) is finite it follows that \(\text{im}(f) \) is finite, too. But the only finite subgroup of \(\mathbb{Z} \) is the group \(0\mathbb{Z} = \{0\} \), thus \(\text{im}(f) = \{0\} \) and it follows that \(f(x) = 0 \) for all \(x \in \mathbb{Z}_n \). Therefore \(f \) is the trivial homomorphism.

(4) • The groups \(\mathbb{Z}_4 \) and \(V \) cannot be isomorphic since \(\mathbb{Z}_4 \) is cyclic and \(V \) is not. The groups \(\mathbb{Z}_4 \) and \(V \) cannot be isomorphic since \(\mathbb{Z}_4 \) has only two elements satisfying the equation \(x^2 = e \) whereas every element in \(V \) satisfies this equation.
• The groups \(S_3 \) and \(\mathbb{Z}_6 \) cannot be isomorphic since \(S_3 \) is not abelian but \(\mathbb{Z}_6 \) is. The groups \(S_3 \) and \(\mathbb{Z}_6 \) cannot be isomorphic since \(S_3 \) is not cyclic but \(\mathbb{Z}_6 \) is. The groups \(S_3 \) and \(\mathbb{Z}_6 \) cannot be isomorphic since \(S_3 \) and \(\mathbb{Z}_6 \) have different lattice diagrams.

(5) See the lecture notes.

(6*) (a) Let \(u, v \in \text{im}(f) \). Then there exists \(x, y \in G \) such that \(u = f(x) \) and \(v = f(y) \). Then
\[
uv = f(x)f(y) = f(xy) = f(y)f(x) = vu
\]
and this shows that \(\text{im}(f) \) is abelian.
(b) If \(f \) is an epimorphism then \(\text{im}(f) = G' \). By (a) this would then mean that \(G' \) is abelian. But this is impossible since \(G' \) is assumed to be not abelian. Therefore \(f \) cannot be an epimorphism.