To be discussed on **Tuesday, October 10**. Exercises with a star (*) give extra points.

(1) Find a flaw in the in the following argument: “One does not need the condition (2) in Proposition 2.8 of the lecture notes since it can be derived from (1) and (3) as follows: Let \(x \in H \). Then \(x^{-1} \in H \) by (3) and then \(e = xx^{-1} \in H \) by (1). Therefore (2) is satisfied.”

(2) **Subgroup Criterion, Alternative Version.** Prove Proposition 2.9 of the lecture notes. That is:

(a) Show that if \(H \) is a subgroup of a group \(G \), then \(H \) is a non empty set and \(xy^{-1} \in H \) for every \(x, y \in H \).

(b) Show that if \(H \) is a non-empty subset of \(G \) such that \(xy^{-1} \in H \), then \(H \) is a subgroup of \(G \).

Hint: for part (b) use Proposition 2.8 of the lecture notes. Prove first that \(e \in H \).

(3) Prove Lemma 2.11 of the lecture notes. That is, assume that \(G \) is an abelian group and \(H \) and \(K \) are two subgroups and show that the set

\[HK := \{ xy : x \in H \text{ and } y \in K \} \]

is a subgroup of \(G \).

(4) Prove the following two results.

(a) Let \(G \) be an abelian group. Show that the set

\[H := \{ x \in G : x^2 = e \} \]

is a subgroup of \(G \).

(b) Let \(G \) be a group and \(a \in G \) a fixed element. Define the **centralizer** \(C(a) \) of the element \(a \) as

\[C(a) := \{ x \in G : xa = ax \} \]

Show that the centralizer of \(a \) is a subgroup of \(G \).

Hint: show first that from \(xa = ax \) follows that also \(x^{-1}a = ax^{-1} \).

(c) Let \(G \) be a group. Define the **center** \(Z(G) \) of the group \(G \) as

\[Z(G) := \{ x \in G : xa = ax \text{ for all } a \in G \} \]

Show that the center of \(G \) is a subgroup of \(G \).

(5*) Let \(G \) be a group and let \(H \) be a subgroup of \(G \). Define the **normalizer** of \(H \) to be

\[N(H) := \{ x \in G : xHx^{-1} = H \} \]

where \(xHx^{-1} \) denotes the set \(xHx^{-1} := \{ xyx^{-1} : y \in H \} \). Show that \(N(H) \) is a subgroup of \(G \).

Hint: Show first that \(e \in N(H) \). Therefore \(N(H) \) is not empty. Next show that if \(xHx^{-1} = H \) then also \(x^{-1}Hx = H \). Now use Proposition 2.9 of the lecture notes. Remember also Lemma 2.5 of the lecture notes.