(1) (a) False.
 (b) True.
 (c) False. It is desirable to show that no permutation can be expressed as a product of both an even and an odd number of transpositions, before defining even and odd permutations.
 (d) False.
 (e) False. $|A_5| = 5!/2 = 120/2 = 6$.
 (f) False. The group $S_1 = \{\text{id}\}$ and $S_2 = \{\text{id}, \sigma\}$ are cyclic (and they are the only two examples of cyclic symmetric groups).
 (g) True. $|A_3| = 3!/2 = 3$. There exists only one type of group with 3 elements and this group is the cyclic group of 3 elements. Therefore A_3 is cyclic.
 (h) True.
 (i) True.
 (j) False. This subset is not closed under the multiplication and neither does it contain the identity element (which is always an even permutation).
 (k) True. This subgroup is the A_{10}.

(2) (a) \begin{itemize}
 \item $\sigma_1 = (1\ 4\ 5\ 8\ 7\ 2)$ (σ_1 is a cycle of length 6).
 \item $\sigma_1 = (1\ 2)(1\ 7)(1\ 8)(1\ 5)(1\ 4)$ (σ_1 is an odd permutation).
\end{itemize}
 (b) \begin{itemize}
 \item $\sigma_2 = (1\ 3\ 2\ 7)(4\ 8\ 6)$ (σ_2 is a product of 2 disjoint cycles, one of length 4 and one of length 3).
 \item $\sigma_2 = (1\ 7)(1\ 2)(1\ 3)(4\ 6)(4\ 8)$ (σ_2 is an odd permutation).
\end{itemize}
 (c) \begin{itemize}
 \item $\sigma_3 = (1\ 5\ 8\ 2\ 4\ 7)$ (σ_3 is a cycle of length 6).
 \item $\sigma_3 = (1\ 7)(1\ 4)(1\ 2)(1\ 8)(1\ 5)$ (σ_3 is an odd permutation).
\end{itemize}

(3) (a) We calculate successively

$$
\begin{align*}
\sigma_4 &= (1\ 4\ 5\ 7) \\
\sigma_2^2 &= (1\ 4\ 5\ 7)(1\ 4\ 5\ 7) = (1\ 5)(4\ 7) \\
\sigma_1^2 &= (1\ 5)(4\ 7)(1\ 4\ 5\ 7) = (1\ 7\ 5\ 4) \\
\sigma_1^4 &= (1\ 7\ 5\ 4)(1\ 4\ 5\ 7) = (1)
\end{align*}
$$

and

$$
\begin{align*}
\sigma_5 &= (3\ 4\ 6) \\
\sigma_2^2 &= (3\ 4\ 6)(3\ 4\ 6) = (3\ 6\ 4) \\
\sigma_1^2 &= (3\ 6\ 4)(3\ 4\ 6) = (1)
\end{align*}
$$

Thus $\text{ord}(\sigma_4) = 4$ and $\text{ord}(\sigma_5) = 3$.

(b) Let $\sigma \in S_n$ be a cycle of length ℓ. Then $\text{ord}(\sigma) = \ell$.

(c) \begin{itemize}
 \item Note that $\sigma_6 = \tau\mu$ with $\tau := (4\ 5)$ and $\mu := (2\ 3\ 7)$. Since τ and μ are disjoint cycles it follows that τ and μ commute, that is $\tau\mu = \mu\tau$. Therefore we get the simple formula $\sigma_6^k = (\tau\mu)^k = \tau^k\mu^k$.
\end{itemize}
Since \(\tau \) is a transposition we get that \(\tau^2 = \text{id} \). Further we have for the cycle \(\mu: \mu^2 = (2\ 3\ 7)(2\ 3\ 7) = (2\ 7\ 3) \neq \text{id} \) and then \(\mu^3 = (2\ 7\ 3)(2\ 3\ 7) = \text{id} \).

Using this information we calculate then
\[
\begin{align*}
\sigma_0^2 &= \tau^2 \mu^2 = \mu^2 \neq \text{id} \\
\sigma_0^3 &= \tau^3 \mu^3 = \tau \neq \text{id} \\
\sigma_0^4 &= \tau^4 \mu^4 = \mu \neq \text{id} \\
\sigma_0^5 &= \tau^5 \mu^5 = \tau \mu^2 \neq \text{id} \\
\sigma_0^6 &= \tau^6 \mu^6 = \text{id}
\end{align*}
\]
Therefore we get \(\text{ord}(\sigma_0) = 6 \). (Note that 6 is a least common multiple of 2 and 3.)

- Note that \(\sigma_2 = \tau \mu \) with \(\tau := (1\ 4) \) and \(\mu := (3\ 5\ 7\ 8) \). As before we conclude that \(\tau \) and \(\mu \) commute since they are disjoint cycles. Therefore we get the simple formula \(\sigma_2^k = (\tau \mu)^k = \tau^k \mu^k \).

Since \(\tau \) is a transposition we have \(\tau^2 = \text{id} \). Further we have for the cycle \(\mu: \mu^2 = (3\ 5\ 7\ 8)(3\ 5\ 7\ 8) = (3\ 7)(5\ 8) \neq \text{id} \), \(\mu^3 = (3\ 7)(5\ 8)(3\ 5\ 7\ 8) = (3\ 8\ 7\ 5) \neq \text{id} \) and then finally \(\mu^4 = (3\ 8\ 7\ 5)(3\ 5\ 7\ 8) = \text{id} \).

Using this information we calculate then
\[
\begin{align*}
\sigma_2^2 &= \tau^2 \mu^2 = \mu^2 \neq \text{id} \\
\sigma_2^3 &= \tau^3 \mu^3 = \tau \neq \text{id} \\
\sigma_2^4 &= \tau^4 \mu^4 = \mu \neq \text{id}
\end{align*}
\]
Therefore we get \(\text{ord}(\sigma_2) = 4 \). (Note that 4 is a least common multiple of 2 and 4.)

- The permutation \(\sigma_1 \) is a cycle of length 6. This suggests that \(\text{ord}(\sigma_1) = 6 \). Explicite calculation verifies this.

- The permutation \(\sigma_2 \) has a decomposition into a product of two disjoint cycles, one of length 3 and one of length 4. A least common multiple of 3 and 4 is 12 and this suggests that \(\text{ord}(\sigma_2) = 12 \). Explicite calculation verifies this.

- The permutation \(\sigma_3 \) is a cycle of length 6. This suggests that \(\text{ord}(\sigma_3) = 6 \). Explicite calculation verifies this.

Let \(\sigma \in S_n \) and assume that \(\sigma = \mu_1 \cdots \mu_k \) is a decomposition of \(\sigma \) into pairwise disjoint cycles \(\mu_i \) of length \(\ell_i \). Then the order of \(\sigma \) is a least common multiple of the integers \(\ell_1, \ldots, \ell_k \), that is \(\text{ord}(\sigma) \in \text{lcm}(\ell_1, \ldots, \ell_k) \).

\((4*)\) (a) A permutation of the set \(G \) is a bijective map \(G \to G \). Thus we have to show three things:

(i) \(\lambda_a \) is indeed a map \(G \to G \). But this is clearly true, since \(ax \in G \) for every \(x \in G \).

(ii) \(\lambda_a \) is surjective. Therefore let \(y \in G \) be an arbitrary element. Set \(x := a^{-1}y \), which is an element in \(G \), too. By construction we have now that \(\lambda_a(x) = ax = a \cdot a^{-1}y = ey = y \). Thus \(\lambda_a \) is indeed surjective.

(iii) \(\lambda_a \) is injective. Therefore assume that \(x, y \in G \) are elements such that \(\lambda_a(x) = \lambda_a(y) \). This means that \(ax = ay \) and since in a group the left cancelation law holds we get that \(x = y \). Thus \(\lambda_a \) is indeed injective.

Alltogether this shows that \(\lambda_a \) is a permutation of the set \(G \).

(b) For any \(x \in G \) we get
\[
\lambda_{ab}(x) = abx = a(bx) = a \cdot \lambda_b(x) = \lambda_a(\lambda_b(x)) = (\lambda_a \lambda_b)(x).
\]
Therefore \(\lambda_{ab} = \lambda_a \lambda_b \) as elements of \(S_G \).
(c) For every $x \in G$ we have $\lambda_e(x) = ex = x$. Thus λ_e is the identity map of G and therefore λ_e is the identity element of the group SG.

(d) Using the previous results we get

$$\lambda_{a^{-1}} \lambda_a = \lambda_{a^{-1}a} = \lambda_e.$$

Thus $\lambda_{a^{-1}}$ is indeed the inverse element of λ_a. That is $\lambda_{a^{-1}} = (\lambda_a)^{-1}$.