To be discussed on Tuesday, November 21. Exercises with a star (*) give extra points.

(1) Mark each of the following true or false.
 a) Every cyclic group is abelian.
 b) Every abelian group is cyclic.
 c) \(\mathbb{Q} \) under the addition is a cyclic group.
 d) Every element of a cyclic group group \(G \) generates \(G \).
 e) For every integer \(n > 0 \) there exists at least one abelian group \(G \) with \(\text{ord}(G) = n \).
 f) Every group of order \(\leq 4 \) is cyclic.
 g) \(S_3 \) is a cyclic group.
 h) \(A_3 \) is a cyclic group.
 i) Let \(G \) be a group such that every proper subgroup of \(G \) is cyclic. Then \(G \) is cyclic.

(2) Greatest Common Divisor. Recall that a integer \(p \geq 2 \) is called a prime number if the only positive integers dividing \(p \) are 1 and \(p \) itself. The set of all prime numbers is denoted by \(\mathbb{P} \), that is

\[\mathbb{P} := \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, \ldots \} \]

which shows the the first 13 prime numbers.

A greatest common divisor \(d \) of a set of non-zero integers \(\{a_1, \ldots, a_k\} \) is a integer which divides every \(a_i \) and such that every integer \(m \) which divides every integer \(a_i \) divides also \(d \).

Given set \(\{a_1, \ldots, a_k\} \) of non-zero integers one can find a greatest common divisor as follows: for every prime number \(p \in \mathbb{P} \) let \(n^p \) be the largest integer such that \(p^n \) divides every \(a_i \) (\(1 \leq i \leq k \)). Then

\[d := \prod_{p \in \mathbb{P}} p^{n^p} = 2^{n_2} \cdot 3^{n_3} \cdot 5^{n_5} \cdot 7^{n_7} \ldots \]

is a greatest common divisor of the set \(\{a_1, \ldots, a_k\} \) of non-zero integers.

a) Every integer can be written as a product of prime numbers. Write the following integers as a product of prime numbers:

\[15, 21, 24, 27, 28, 35, 36, 30, 40, 42, 46 \text{ and } 48. \]

b) Determine a greatest common divisor for the following sets:

\[\{15, 40\} \quad \{24, 36\} \quad \{21, 48\} \]

\[\{21, 41\} \quad \{30, 36\} \quad \{15, 21\} \]

\[\{21, 46, 23\} \quad \{30, 42, 46\} \quad \{-7, 21, 28\} \]

(3*) Let \(H \) be a cyclic group with \(m \) elements and \(K \) a cyclic group with \(n \) elements. Let \(x \) be a generator of \(H \) and let \(y \) be a generator of \(K \). Then the group

\[G := H \times K \]

has \(nm \) elements.

a) Show that if \(nm \) is a least common multiple of \(n \) and \(m \), then \((x, y) \) is a generator of \(G \).
(b) Show that if nm is not a least common multiple of n and m, then (x, y) is not a generator of G.

(c) Show that if (x', y') is a generator of G then x' is a generator of H and y' is a generator of K.

(d) Use the results of part (b) and (c) to conclude that if nm is not a least common multiple of n and m, then G is not cyclic.

Note that the above exercise explains why the Klein 4-Group $V = C_2 \times C_2$ is not cyclic, whereas the group $C_2 \times C_3$ is cyclic (see exercises 3.2 and 4.4): the least common multiple of 2 and 2 is again 2 (and not 4) in the case of the Klein 4-Group whereas the least common multiple of 2 and 3 is 6 which is the order of $C_2 \times C_3$.