(1) Find the generators of the groups \mathbb{Z}_6, \mathbb{Z}_8, \mathbb{Z}_12 and \mathbb{Z}_{60}.

(2) Let p be a prime number. Show that the trivial subgroups are the only subgroups of \mathbb{Z}_p. That is, show that if $0 \neq x \in \mathbb{Z}_p$, then $\mathbb{Z}_p = \langle x \rangle$.

(3) Let p and q be two prime numbers. How many generators does the group \mathbb{Z}_{pq} have?
 (Hint: The order of \mathbb{Z}_{pq} is pq. Not all of its elements are generators and you need to count them correctly. There are two cases: either $p = q$ or $p \neq p$.)

(4) Determine all subgroups of \mathbb{Z}_{36} and draw the lattice diagram for this group.
 (Hint: The group \mathbb{Z}_{36} contains a subgroup which is of the same type as the \mathbb{Z}_{18}. You can use the knowledge from the lecture notes about the subgroups of the group \mathbb{Z}_{18} to determine its subgroup structure!)

(5) (a) Consider the cyclic group \mathbb{Z}_{30}. Find the number of elements of the subgroup generated by the element $25 \in \mathbb{Z}_{30}$.
 (b) Consider the cyclic group \mathbb{Z}_{42}. What is the order of the subgroup $\langle 30 \rangle \leq \mathbb{Z}_{42}$?
 (c) Consider the cyclic group \mathbb{Z}_{42}. What is the order of the element $25 \in \mathbb{Z}_{42}$?

(6*) The monster group M (also known as the Fischer-Griess Monster or The Friendly Giant) is the highest order sporadic group.\footnote{see for example http://en.wikipedia.org/wiki/Monster_group} The order of M is
 \[|M| = 8080174247945128758864599049617107570057543680000000000 \]
 \[\approx 8 \cdot 10^{53}. \]

It is in no way a cyclic group. However, in this exercise we will not study the Friendly Giant but rather we consider the group

\[G := \mathbb{Z}_{8080174247945128758864599049617107570057543680000000000}, \]

that is the cyclic group which has the same order as the Friendly Giant.

(a) Determine the order of the element $323 \in G$
(b) Determine the subgroup $\langle 37 \rangle$.

\[G := \mathbb{Z}_{8080174247945128758864599049617107570057543680000000000}. \]