In order to show the equality "\(A \cap (B+C) = (A \cap B) + C \)" we have to show the two inclusions "\(A \cap (B+C) \subset (A \cap B) + C \)" and "\(A \cap (B+C) \supset (A \cap B) + C \)".

"\(\subset \)" Let \(x \in A \cap (B+C) = (A \cap B) + C \). Then \(x \in B + C \) and thus there exists \(y \in B \) and \(z \in C \) such that \(x = y + z \). On the other hand we have that also \(x \in A \) and therefore \(x = y + z \in A \), too. Since by assumption \(C \subset A \) we have that \(z \in A \). Therefore \(y = z - x \in A \) since \(A \) is a vector space. Then \(y \in A \cap B \) and \(x = y + z \in (A \cap B) + C \). This shows the inclusion \(A \cap (B+C) \subset (A \cap B) + C \).

"\(\supset \)" Let \(x \in (A \cap B) + C \). Therefore there exist \(y \in A \cap B \) and \(z \in C \) such that \(x = y + z \). Clearly \(x \in B + C \). Since \(C \subset A \) we have that \(z \in A \), too. Since \(A \) is a vector space we get that then also \(x = y + z \in A \). Thus \(x \in A \cap (B + C) \) and this concludes the proof of the inclusion \((A \cap B) + C \subset A \cap (B+C) \).

(2) (a) Let \(v \in M \). Then \(v = 1 \cdot v \) is a linear combination of elements in \(M \). Therefore \(v \in \text{span} \ M \). That is \(M \subset \text{span} \ M \).

(b) Let \(v \in \text{span} \ M \). Then \(x \) is a linear combination of vectors of \(M \). But since \(M \subset M' \) this means that \(v \) is also a linear combination of vectors \(M' \) (the same linear combination will do!). Therefore \(v \in \text{span} \ M' \).

This shows \(\text{span} \ M \subset \text{span} \ M' \).

(c) "\(\Rightarrow \)" If \(M = \text{span} \ M \) then \(M \) is a linear subspace since we know that \(\text{span} \ M \) is a linear subspace (Proposition 2.12).

"\(\Leftarrow \)" Now assume that \(M \) is a linear subspace. We know already from the first part that in \(M \subset \text{span} \ M \). Therefore we need only to show the inclusion in the opposite direction. Thus let \(v \in \text{span} \ M \), that is we can write \(v \) as a linear combination

\[
v = \sum_{u \in M} a_u u
\]

of vectors of \(M \). But since \(M \) is a linear subspace of \(V \) we have that \(v \in M \). Therefore \(\text{span} \ M \subset M \) and altogether equality holds.

(d) Since we know that \(\text{span} \ M \) is a linear subspace of \(V \) we know by the previous part that \(\text{span}(\text{span}(M)) = \text{span} \ M \).

(e) We need to show the inclusion in both directions:

"\(\subset \)" Let \(v \in \text{span}(M \cup M') \). Then there exists a \(x \in F(M \cup M') \) such that

\[
v = \sum_{u \in M \cup M'} x(u) u
\]

and thus

\[
v = \sum_{u \in M} x(u) u + \sum_{u \in M' \setminus M} x(u) u
\]

\(\in \text{span} \ M + \text{span} \ M' \)

since the restriction of \(x \) to \(M \) is a vector of \(F(M) \) and the restriction of \(x \) to \(M' \setminus M \) is a vector for \(F(M') \). Therefore \(\text{span}(M \cup M') \subset \text{span} \ M + \text{span} \ M' \).
Let \(v \in \text{span } \mathcal{M} + \text{span } \mathcal{M}' \). Then there exists a \(x \in F(M) \) and \(x' \in F(M') \) such that

\[
v = \sum_{u \in \mathcal{M}}' x(u)u + \sum_{u \in \mathcal{M}'}' x'(u)u
\]

and therefore by linearity

\[
v = \sum_{u \in \mathcal{M} \cup \mathcal{M}'} (x + x')(u)u
\]

\(\in \text{span}(\mathcal{M} \cup \mathcal{M}') \)

since \(x + x' \in F(M \cup M') \). Thus \(\text{span } \mathcal{M} + \text{span } \mathcal{M}' \subset \text{span}(\mathcal{M} \cup \mathcal{M}') \).

(3) • Let us first determine \(U \cap W \). If \(x \in U \cap W \) then there exists \(t_1, t_2, t_3, t_4 \in \mathbb{R} \) such that \(x = t_1v_1 + t_2v_2 = t_3v_3 + t_4v_4 \). We are interested in all possible values for \(t_1, t_2, t_3 \) and \(t_4 \) which satisfy this equation.

That is, we have to solve the homogeneous system of linear equations

\[
t_1v_1 + t_2v_2 - t_3v_3 - t_4v_3 = 0.
\]

Its simple coefficient matrix is:

\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & -1 & 1 & -1
\end{pmatrix}
\]

Using elementary row transformations we can transform this matrix into the matrix:

\[
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{pmatrix}
\]

We get that all the solutions of the equation are given by \(t_1 = t_2 = t_3 = t_4 = t \in \mathbb{R} \).

Therefore \(U \cap W \) is equal to

\[
U \cap W = \left\{ t \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}.
\]

• We claim that \(U + W = \mathbb{R}^3 \). Therefore we need to show that for every \(x \in \mathbb{R}^3 \) there exists numbers \(t_1, t_2, t_3, t_4 \in \mathbb{R} \) such that

\[
x = t_1v_1 + t_2v_2 + t_3v_3 + t_4v_4.
\]

This is a nonhomogeneous system of 3 linear equations in the 4 unknown variables \(t_1, t_2, t_3 \) and \(t_4 \). Its extended coefficient matrix is:

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & x_1 \\
0 & 1 & 0 & 1 & x_2 \\
1 & -1 & -1 & 1 & x_3
\end{pmatrix}
\]

Using elementary row transformations we can transform it into

\[
\begin{pmatrix}
1 & 0 & 0 & 1 & \frac{1}{2}(x_1 + x_2 + x_3) \\
0 & 1 & 0 & 1 & x_2 \\
0 & 0 & 1 & -1 & \frac{1}{2}(x_1 - x_2 - x_3)
\end{pmatrix}
\]

Therefore we can see that we can always find \(t_1, t_2, t_3, t_4 \in \mathbb{R} \) such that

\[
x = t_1v_1 + t_2v_2 + t_3v_3 + t_4v_4.
\]
Consider the case
Let (a)
Assume that there exists a linear combination of the zero vector by elements
\[0 = a_0 x^0 + \ldots + a_n x^n. \]
Since the zero vector of \(C \) of \(v \) in \(\mathbb{R}^3 \), we have shown that \(\mathbb{R}^3 \subset U + W \) and equality holds since \(U + W \subset \mathbb{R}^3 \).

- \(U \) and \(W \) are two planes passing through the origin which intersect in a line \(U \cap W \) (passing through the origin, too) and which “span” the whole \(\mathbb{R}^3 \).

(4) Assume that there exists a linear combination of the zero vector by elements of \(M \). Then there exists a minimal \(n \in \mathbb{N} \) such that we can write the 0 vector in \(C^0(\mathbb{R}) \) as
\[a_0 p_0 + \ldots + a_0 p_0 = 0. \]
Since the zero vector of \(C^0(\mathbb{R}) \) is the constant zero-function we have from the above equality that
\[a_0 x^0 + \ldots + a_n x^n = 0 \]
for every \(x \in \mathbb{R} \).
We have to distinguish two cases \(n = 0 \) and \(n > 0 \).

(a) Consider first the case \(n = 0 \). Then \(a_0 = 0 \) and (a) reduces to the trivial linear combination.

(b) Thus we may assume that \(n > 0 \). Then due to the minimality of \(n \) we have that \(a_n \neq 0 \). Thus (**) says that \((*) \) is a polynomial of degree \(n \) with infinite many roots. But this contradicts the Fundamental Theorem of the Algebra which states that \((*) \) can have at most \(n \) roots.
Therefore this case is not possible.
Thus only the first case is possible and in this case (*) it follows that the zero vector of \(C^0(\mathbb{R}) \) can only be the trivial linear combination of vectors in \(M \).

(5*) Let \(f, g \in U \) and \(a \in F \). Then \((f + g)(x_0) = f(x_0) + g(x_0) = 0 + 0 = 0 \) and
\[(a f)(x_0) = a f(x_0) = a 0 = 0. \]
Thus \(f + g \in U \) and \(a f \in U \). Clearly \(U \) is not empty since \(0 \in U \). Thus it follows by the subspace criterion that \(U \) is a subspace of \(F^M \).
Let \(f, g \in W \) and \(a \in F \). Then for every \(x, y \in M \) we have
\[(f + g)(x) = f(x) + g(x) \]
\[= f(y) + g(y) \]
\[= (f + g)(y) \]
and
\[(a f)(x) = a f(x) \]
\[= a f(y) \]
\[= (a f)(y). \]
Therefore \(f + g \in W \) and \(a f \in W \). Clearly \(W \) is not empty either since \(0 \in W \). Thus we can apply the subspace criterion and we get that \(W \) is a subspace of \(F^M \).

(b) Let \(f \in U \cap W \). Since \(f \in U \) we have that \(f(x_0) = 0 \) and since \(f \in W \) we have that \(f(x) = f(y) \) for every \(x, y \in M \). In particular \(f(x) = f(x_0) = 0 \) for every \(x \in M \) and thus \(f = 0 \). Therefore \(U \cap W = \{0\} \).

(c) Let \(h \in F^M \) be an arbitrary map. Define maps \(f, g \in F^M \) by \(f(x) := h(x) - h(x_0) \) and \(g(x) := h(x_0) \) for every \(x \in M \). Then \(f \in U \) and \(g \in W \) and by construction we have \(h = f + g \). Thus \(h \in U + W \) and this shows that \(F^M \subset U + W \). Equality holds since \(U + W \subset F^M \).