(1) **Linear Maps.** In this task \(V \) and \(W \) are vector spaces over a field \(F \).

(a) What is by definition a linear map \(f : V \to W \)?
(b) What is \(\text{im} f \) and \(\ker f \)?
(c) Prove that \(\ker f \) is a subspace of \(V \).
(d) What can you conclude from \(\ker f = 0 \)?
(e) Assume that \(V \) is a finite dimensional vector space. What does the dimension formula for linear maps state?
(f) Assume that \(V \) and \(W \) are finite dimensional vector of the same dimension and let \(f : V \to W \) be a linear map. Prove that the following three statements are equivalent:
 (i) \(f \) is an isomorphism.
 (ii) \(f \) is a monomorphism.
 (iii) \(f \) is an epimorphism.

(2) **Coordinate Description of Linear Maps.** In this task \(V \) and \(W \) are finite dimensional \(F \)-vector spaces. Assume that \(B = (b_1, \ldots, b_n) \) is a basis of \(V \) and that \(C = (c_1, \ldots, c_m) \) is a basis of \(W \).

(a) Let \(f : V \to W \) be a linear map. How are the coefficients of the coordinate matrix \(A \) of \(f \) with respect to the bases \(B \) and \(C \) defined?
(b) What is a transition matrix and what they used used for? Give a short explanation.
(c) What is the definition of two \(m \times n \)-matrices \(A \) and \(A' \) being equivalent?
(d) If \(A \) and \(A' \) are equivalent matrices, what can you conclude from it? What can you conclude in the special case that \(A \) is an \(n \times n \)-matrix which is equivalent to the identity matrix \(I \)?
(e) Consider the endomorphism \(A : \mathbb{R}^3 \to \mathbb{R}^3 \) given by

\[
A := \begin{pmatrix} -8 & -2 & -7 \\ -15 & -3 & -17 \\ 0 & 0 & 1 \end{pmatrix}
\]

What is the coordinate matrix \(A' \) of \(A \) with respect to the basis

\[
B := \begin{pmatrix} 2 \quad 3 \quad 1 \\ 5 \quad 7 \quad 2 \\ 0 \quad 1 \quad 0 \end{pmatrix}
\]

of \(\mathbb{R}^3 \)?
(f) What all can you conclude about the endomorphism \(A \) from the coordinate matrix \(A' \) obtained in part (e)?
(3) **Transition Matrices** In this task we consider the F^n vector space F^n. Assume that B and C are arbitrary bases of F^n.

(a) Let S be the transition matrix from canonical standard basis of F^n to B and let T be the transition matrix from the canonical standard basis of F^n to C.

Derive a formula for the transition matrix from the basis C to the basis B using the matrices S and T.

(b) Consider the bases

$$B := \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right)$$

and

$$C := \left(\begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right).$$

of the vector space \mathbb{R}^3.

Compute the transition matrix from the basis C to the basis B.

(4) **Rank of a Linear Map.** In this task V and W are vector spaces over the same field F and $f: V \rightarrow W$ a linear map.

(a) How is the rank of the linear map f defined?

(b) Assume that u_1, \ldots, u_k is a system of vector space. What relation exists between $\text{rank}(u_1, \ldots, u_k)$ and $\text{dim}\text{span}\{u_1, \ldots, u_k\}$?

(c) Assume from now on that V and W are finite dimensional vector spaces. Let $B := (b_1, \ldots, b_m)$ be a basis of V and $C := (c_1, \ldots, c_m)$ be a basis of W. What is the basis isomorphism of W with respect to the basis C? How is the coordinate isomorphism of W with respect to the basis C defined?

(d) Assume that u_1, \ldots, u_k is a system of vectors of the vector space W. Let $a_1, \ldots, a_k \in F^m$ be the coordinate vectors of the vectors u_1, \ldots, u_k with respect to the basis C. Why does the equality $\text{rank}(u_1, \ldots, u_k) = \text{rank}(a_1, \ldots, a_k)$ hold?

(e) Assume that A is the coordinate matrix of f with respect to the bases B and C. Show that $\text{rank} f = \text{rank} A$.

2